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Research Group Overview

We develop Superconducting Technology to 

solve problems in single-photon detection

We use this technology to enable new science
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SNSPD Device Concept

• Performance exceeds conventional detectors but requires cryogenic cooling (1-4 K)

• 16 years of active development (MIT / LL, NIST, JPL, Russia, Europe, Japan, China)

• SNSPDs are the highest performing detector for time correlated single photon counting
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Tungsten Silicide SNSPDs

15 μm

Marsili et al, Nature Photonics 7, 210 (2013)

Superconducting Nanowire Single Photon Detectors

• Time correlated single photon counting, UV-5 µm

• > 90% efficiency at 1.5 µm

• < 100 ps time resolution 

• Sub-Hz intrinsic dark rates

• 40 ns dead time

• Arrays as large as 64 pixels

• 1 K operating temperature

• Primary applications are space-based optical 

communication and quantum optics
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Optical Cavity to Enhance Absorption

• Photosensitive nanowire element is embedded in a vertical quarter-wave cavity

• Enhances detection efficiency from 20% to >90%

• Have optimized for high efficiency at 1550, 1310, 800, 373, 313 nm

back reflector

quarter wavelength dielectric

anti-reflective coating
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Optical Stack for Enhanced Absorption
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Self-aligned fiber coupling

Device chip

Zirconia sleeve

Fiber ferrule

Sapphire rod

Coaxial connector pin

Miller et al., Opt. Express (2011)

Optical fiber
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93% System Detection Efficiency

SDEmax

SDEmin

93.2 ± 0.4%

80.5 ± 0.4%

λ = 1550 nm

T = 120 mK
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Mid-IR Response
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Overview of JPL SNSPD Development

IR Arrays for Optical Communication Ultraviolet SNSPDs

High Operating Temperature SNSPDs Fundamental Research

• 64 pixel arrays for DSOC ground terminal

• 12 pixel arrays for secondary LLCD ground terminal

• 64 pixel imaging arrays with row-column readout 

• Fiber-coupled arrays for QKD

• Feasibility studies for future ISS teleportation concept

• UV SNSPDs for trapped ion quantum computing

• 80% efficiency at 370 and 315nm at 4.2 K

• Single photon sensitivity at 245nm

• Potential future applications in UV astrophysics

• MgB2 SNSPDs single photon sensitive at 17 K

• Currently exploring YBCO SNSPDs w/ HeNeGa FIB
• Ultra-low jitter SNSPDs

• Frequency and time-domain multiplexing schemes

• Waveguide SNSPDs for integrated photonics

• Superconducting readout electronics

• Theory and device physics modeling

• New detector concepts and applications

• Collaboration with quantum optics groups

NASA STMD – NASA SCaN – DARPA Other Government Agency

JPL, Other Government Agency DARPA – JPL -- Caltech -- NASA STMD
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SNSPD Arrays

• Amorphous WSi permits scaling to large arrays

• Each pixel has essentially the performance of a 

single pixel fiber-coupled device

• Fiber-coupled vs free-space

• Non-imaging vs imaging 

• Direct readout vs “row-column”

• Recently demonstrated up to 64 pixel arrays
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12 Pixel SNSPD Arrays

• Array design based on single-pixel SNSPDs described above

• 12 Counterbiased Nanowires, 6 wires in each plane, 160 nm width

• Designed for fiber coupling to 1-m OCTL telescope

• 64 µm diameter active area matched to GIF-625 multimode fiber

• Quarter wave optical cavity to resonantly enhance absorption at 1.55 µm

• ~40% total array efficiency

• Max count rate ~10 MHz / channel

64 μm
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12 Pixel SNSPD Array Packaging

• Same self-aligned fiber coupling scheme is used 

• Each wire is read out independently

• Operated in an 800 mK cryostat with fiber coupling
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Field Demonstration: LLCD

Moon

39, 78

155, 311

622 Mb/s 

DOWNLINK

10, 20 Mb/s 

UPLINK

Lunar Atmospheric Dust Environment Explorer (LADEE), 

ARC

Lunar Lasercom Space Terminal

(LLST), MIT-LL

39 Mb/s 

DOWNLINK

Lunar Lasercom Ground 

Terminal (LLGT),  MIT-LL

BEACON

UPLINK

Lunar Laser Operations

Center (LLOC), MIT-LL

Science Ops.

Center, 

GSFC

ESA, Tenerife, 

Canary Islands

Table Mtn

CA White Sands 

NM

Greenbelt

MD

Boston

MA

Lunar Laser Communication Demonstration (LLCD)

Launched: August 2013

Operations: October-November 2013

Lunar 

Lasercom 

OCTL Terminal

(LLOT),  JPL

First laser communication demonstration from Lunar distance

• Bidirectional laser communication demo from lunar orbit (400,000 km) at 1550 nm

• First demonstration of laser communication beyond earth orbit

• Uplink rates 10-20 Mbps, Downlink rates 39-622 Mbps

• Transmit Payload on LADEE Spacecraft (ARC) implemented by MIT-LL

• Managed by GSFC, Primary ground terminal implemented by MIT-LL

• Secondary ground terminals implemented by JPL and ESA
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LLOT Reciever Overview

• LLOT was a secondary ground station for the Lunar Laser Communication 

Demonstration (LLCD), located at Table Mountain, CA
− LLOT supported 20 LLST passes during October-November 2013

− Received error-free downlink at 39 / 79 Mbps

− Link support at Sun-Earth-Probe (SEP) > 10

− Transmit laser beacon to assist link acquisition

− Transmit limited real-time channel and link diagnostics to operations center 

− Receiver implemented in software

− 12-pixel WSi SNSPD detector arrays were operating at 800 mK.

− SNSPD arrays were infused in ~January 2013, still very early stage technology

OCTL Telescope
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Pulse Position Modulation

A     B     C    D     E     F     G    H      I     J      K     L    M     N    O    P

Time (ns)

• Data is encoded in optical pulse timing

• Ideal for “photon starved” applications such as deep space optical communication

• Send more data with less mass and power on the spacecraft

• LLST signals use PPM-16 encoding with 311 MHz – 5 GHz variable slot rate

• Scheme was recently used under DARPA InPho program to encode 13 bits/photon

• Requires detectors with high efficiency and sub-nanosecond time resolution



18

Jet Propulsion Laboratory
California Institute of Technology

Pulse Position Modulation

A     B     C    D     E     F     G    H      I     J      K     L    M     N    O    P

Time (ns)

• Data is encoded in optical pulse timing

• Ideal for “photon starved” applications such as deep space optical communication

• Send more data with less mass and power on the spacecraft

• LLST signals use PPM-16 encoding with 311 MHz – 5 GHz variable slot rate

• Scheme was recently used under DARPA InPho program to encode 13 bits/photon

• Requires detectors with high efficiency and sub-nanosecond time resolution



19

Jet Propulsion Laboratory
California Institute of Technology

Pulse Position Modulation

A     B     C    D     E     F     G    H      I     J      K     L    M     N    O    P

Time (ns)

• Data is encoded in optical pulse timing

• Ideal for “photon starved” applications such as deep space optical communication

• Send more data with less mass and power on the spacecraft

• LLST signals use PPM-16 encoding with 311 MHz – 5 GHz variable slot rate

• Scheme was recently used under DARPA InPho program to encode 13 bits/photon

• Requires detectors with high efficiency and sub-nanosecond time resolution



20

Jet Propulsion Laboratory
California Institute of Technology

DSOC Tech Demo Mission

Beacon & Uplink

1030 nm

292 kb/s 

@ 0.4 AU

1550 nm

Deep Space

Network

(DSN )

TBD

MOC

Optical Comm Ops Ctr.

JPL, Pasadena, CA

Ground Laser Transmitter (GLT)

Table Mtn., CA

5kW, 1m-dia. Telescope

Ground Laser  Receiver (GLR)

Palomar Mtn., CA

5m-dia. Hale Telescope

Spacecraft 

Flight Laser 

Transceiver

(FLT)

4W, 22 cm dia.

20

Performance using 4W average laser power w/22 cm 

flight transceiver to 5m ground telescope

This document has been reviewed and determined not to contain export controlled technical data.
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DSOC Project Overview

• Phase A of NASA Technology Demonstration Mission

• Flight terminal planned to launch on PSYCHE mission in 2022

• Projected downlink data rates from 200 kbps - 265 Mbps

• PPM 16 – 128, 500 ps – 8 ns slot widths, 4 slot intersymbol guard time

• Developing a 320-µm 64-pixel WSi SNSPD array for the ground receiver
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64-Pixel SNSPD Array

• 64-pixel WSi SNSPD array embedded in optical cavity optimized for 1550 nm

• 320-µm dia. free-space coupled active area, 4 quadrants, 16 co-wound wires per quadrant

• 13.3% nanowire fill factor: 4.5 x 160 nm wires on a 1.2 µm pitch

• Two-layer AR coating to enhance efficiency at low fill factor: 73% system detection efficiency

• 62 out of 64 measured nanowires show bias plateau

• Full 64-channel readout system and 64-channel time-to-digital converter

CAD Design of SNSPD focal plane array CAD Design showing one of 16 

individual sensor elements per 

quadrant

Optical microscope image of SNSPD 

array
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Project Goals and SNSPD Performance

DSOC Goals Progress to date Capability

Achieved

Detection 

Efficiency

>50% minimum

>70% desired

93% (fiber-coupled single pixel)

73% (Free Space, 320 µm array)

Timing Jitter 230 ps (FWHM) 80 - 120 ps (SNSPD array)

200 – 250 ps (with TDC)

False 

Counts

< 1 Mcps total
free space coupled

0.35 – 3.8 Mcps
(320 µm array)

Maximum

Count Rate

830 Mcps
(264 Mbps, 0.2 AU, night cruise)

465 – 1160 Mcps (SNSPD array)

~600 Mcps (with TDC)

Active Area 260 µm diameter
(35 µrad seeing, Palomar daytime)

320 µm diameter
(50 µrad seeing, Palomar daytime)

Numerical 

Aperture

f/1.2 f/4

1550 nm operating wavelength

Free space coupled

1 K operating temperature
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Free Space Coupling

• Efficient coupling to large 

apertures requires free space 

coupling with cryogenic lens

• 300 K BK7 vacuum window

• 40 K, 4 K BK7 filters to block 

thermal background

• Engineering tradeoff between 

efficiency and false counts

• Experimenting with cryogenic 

spectral and spatial filters

• Must consider finite numerical 

aperture of detector 
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SNSPD Array Readout Architecture

• Direct readout of 64 channels into an FPGA

• Brass flex circuits from < 1 – 40 K

• DC-coupled cryogenic amplifiers

• Copper flex circuits from 40 - 300 K

• Room temperature amplifiers and comparators

• FPGA-based time tagger

• Currently setting up SNSPD optical communication testbed

SNSPD (1K)

Cryoamp (40K)

Bias

Cryostat

A

D

Computer

TDC PC

LNA (300 K)

Software
Analog

Pulses

Asynchronous

LVDS
Time

Tags

Programmable

Comparator

16-channel brass RF flex circuit
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DC Coupled Cryogenic Amplifiers

• 2x 32-channel amplifier boards operated at 40 K

• 32 dB total gain

• Low-cost commercial cell phone components

• RFMD SGL-0622z cryogenic RF amplifier

• Broadcom ATF-35143 Psuedomorphic HEMT 

• DC coupled with 50 ohm terminated input

• Detector bias added on amplifier board

32-channel cryogenic amplifier board, operated at 40 K

SNSPD output pulses at different bias points
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Time to Digital Converter Development

• Asynchronous time tagging receiver approach

• Need to tag photon arrivals across 64 channels with high time resolution

• Need to stream data into receiver FPGAs at ~ gigatag / second count rates

• Streaming 64-channel TDC currently under development through commercial partners

• Prototype TDC can fill 512 Mtag buffer at rates up to 600 Mtps w/ 166ps resolution



28

Jet Propulsion Laboratory
California Institute of Technology

Efficiency Measurements

• System detection efficiency measured through cryostat window, 40K and 4K IR filters

• Measured SDE by focusing 50 um spot into one half plane (32 channels)

• Measured 73% efficiency in TE polarization at 1550 nm, 65% in TM
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Efficiency Measurements

• Cavity is well centered near 1550 nm

• Efficiency matches RCWA simulation assuming 93% total transmission (97.6% per window)

93% Window Transmission
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Maximum Count Rate

• MCR measured with beam centered on a single quadrant due to count rate limitations in TDC

• 120 – 300 Mcps 3dB point per quadrant

• Scales to 465 – 1160 Mcps across 62 pixels
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Device Timing Jitter

• Representative individual pixel timing jitter measured using mode-locked laser and oscilloscope

• IRF is close to Gaussian

• 125 – 79 ps FWHM
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System Timing Jitter

• Full system timing jitter is typically below 250 ps FWHM

• Dominated by jitter in FPGA-based time-to-digital converter

• Timing offsets between channels are due to imperfect length matching in readout chain
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False Count Rate

• 350 kcps at back of plateau – 3.8 Mcps at front of plateau

• Can implement cryogenic spatial filter and/or shortpass filter to improve this

• Engineering tradeoff between false counts and efficiency
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Angular Acceptance of Detector

• RCWA simulations predict that optical stack limits angular acceptance of detector

• 3 dB point is at a half-angle of 26 degrees 

• Resonances are due to diffraction effects, break azimuthal symmetry
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Absence of Crosstalk

• No crosstalk is observed with 1200 nm pitch co-wound arrays

• Severe crosstalk was observed with 320-800 nm pitch co-wound arrays

• From scaling, crosstalk is believed to be thermal

• Physics of crosstalk is under study with a generalized electrothermal model
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Absence of Afterpulsing

• Interarrival time histogram shows no presence of afterpulsing

• Recovery time is 28 ns



37

Jet Propulsion Laboratory
California Institute of Technology

64 Pixel “Row-Column” Arrays

• 64 pixel (8 x 8) sparse WSi SNSPD array 

for fast time-correlated imaging

• Row-Column readout strategy allows 64 

pixels to be read out using 16 lines

• Kilopixel Row-Column arrays are “low-

hanging fruit” with 64-channel readout

8x8 Array at 1550 nm Operating Concept
Allman et al, APL (2015)
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Frequency Multiplexed SNSPDs

• Superconducting Microwave Resonators used to read out SNSPDs

• Scalable to >1000 pixels per RF feedline  
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Optical Multiplexing Strategies

• Superconducting Microwave Resonators read out superconducting detectors

• Use cryogenic optical modulator to encode many “banks” of RF tones onto an 

optical carrier

• Scalable pathway to get megapixel-class superconducting camera data out of a 

sub-kelvin cryostat

• Especially relevant for Far-IR and deep UV astrophysics applications
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Ultra High Time Resolution SNSPDs

• Single photon detection with 3.2 ps FWHM 

time resolution achieved at 400 nm and 

4.8 ps FWHM jitter at 1550 nm

• Specialized SNSPD with low-noise 

cryogenic amplifier readout

• 5 µm x 120 nm x 5 nm NbN nanowire

• Still limited by instrumental mechanisms at 

lowest jitter – have not yet reached 

fundamental limits

• Intrinsic jitter mechanism is now 

accessible for study

• Low jitter in devices with larger active area 

is practical using differential readout

400 nm

35 uA
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Ultraviolet SNSPDs

• Fiber-coupled MoSi UV SNSPDs for applications in ion trap quantum computing

• 80% Efficiency at 370 and 315 nm, single photon sensitivity at 245 nm

• DBR mirrors to enhance absorption

• 4.2 K operating temperature

• mHz dark count rates when coupled to optics, < 7e-5 cps intrinsic dark count rates
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Efficiency and Dark Counts at 370nm

4.0 K

0.8 K
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Integration with Ion Trap Chips

• Hybrid integration between ion trap 

chips and free-space UV SNSPDS

• Collaborative effort between JPL, 

NIST, Sandia, and Duke University
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Intrinsic SNSPD Dark Counts

• SNSPDs optimized for high efficiency in the NIR are limited by thermal blackbody

• False count rate determined by spatial and spectral filtering

• UV SNSPDs are blind to IR, ideal for studying intrinsic false counts

• False counts <10-3 cps at 70% SDE coupled to fiber

• 56 µm diameter active area coupled to 50 µm core fiber
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Intrinsic SNSPD Dark Counts

device detection efficiency at 370 

nm 

measured DCR for 

56 μm diameter device

scaled DCR for 

100 μm2 device
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• To improve the statistics, returned to larger active area devices (56 µm diameter)

• Performed false count measurements at 4 K without coupling to fiber

• Each point integrated for 10 hours

• Measured 7e-5 cps (6 counts per day) on large-area device at 4 K

• If DCR scales with active area, 10 x 10 µm pixel would have 3e-6 cps (88 counts per year)
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Intrinsic SNSPD Dark Counts

• Measured 56 µm device in a heavily shielded dilution refrigerator at 20 mK

• Illuminated with cryogenic UV LED at 4 K, integrated 28 hours per point

• False counts at 20 mK comparable to 4.0 K in less well shielded system

• Would expect temperature dependence for intrinsic dark counts
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Predicted Cosmic Ray Limits

• At sea level, muons are the dominant contribution to cosmic ray flux

• Integrated flux rate 0.0148 muon / cm2 / second, average energy 4 GeV

• Modeled thermal transport in Si, found < 10 µm sensitive region beyond active area

• For 60 µm diameter detectors needed to couple efficiently to 1-m telescope, muon 

count rate is 5.7e-8 cps – much lower than observed count rates

Simple Cylindrical Hotspot Model Monte Carlo Thermal Transport Model
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Ultra Low Dark Counts for UV SNSPDs

device detection efficiency at 370 

nm 

measured DCR for 

56 μm diameter device

scaled DCR for 

100 μm2 device
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• 10 nm thick, 110 nm wide MoSi wire optimized for high efficiency (76%) at 370 nm

• UV SNSPDs have > 70 dB blindness to IR wavelengths, eliminating thermal background

• Measured 7e-5 cps (6 counts per day) on large-area device at 4 K

• If DCR scales with active area, 10 x 10 µm pixel would have 3e-6 cps (88 counts per year)
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On-Chip Integrated SNSPDs

• WSi SNSPDs coupled to SiN waveguide photonics platform

• Integration with low-loss broadband optical couplers (Collaboration w/ Painter Group, Caltech) 

• Integration with on-chip ring resonators or echelle grating to form channelizing spectrometer or 

DWDM receiver for QKD

• Can realize a robust, on-chip cryogenic spectrometer, particularly in the mid-IR

• Promising preliminary results
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On-Chip Integrated SNSPDs
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On-Chip Integrated SNSPDs
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Future Directions for Waveguide SNSPDs

• Single-mode receivers behind AO systems

- Integrated photonics is well suited to one or few spatial modes

• Ultra-low jitter optical communication receivers

- Waveguide devices can be very short, reducing geometric jitter

• Frequency demultiplexing receivers

- Integrated photonics is well suited to on-chip spectrometers, AWGs

• Ultra-high count rate receivers

- Trees of low-loss beamsplitters can be used to feed light to SNSPDs

• Advanced receiver schemes

- “Green Machine” can be implemented in photonic nanoprocessors

- Gives information efficiency of PPM while alleviating peak-to-average power 

requirements on the transmit laser. 

• On-chip heralded single photon sources

- Relevant for space-to-ground quantum communication experiments
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Conclusions

• SNSPDs are the highest performing detectors available for time correlated single photon counting

• Deep cryogenic operating temperatures make them best suited for the ground

• Progress in performance has been extremely rapid

• Technology is very new, with many opportunities for new innovation

• Fully compatible with integrated photonics

64-pixel SNSPD array mounted 

in chip carrier
Optical microscope image of array


